198 research outputs found

    Effectiveness of individualized inhaler technique training on low adherence (LowAd) in ambulatory patients with COPD and asthma

    Get PDF
    © 2022. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the published version of a published work that appeared in final form in npj primary care respiratory medicineTo analyze whether there is improvement in adherence to inhaled treatment in patients with COPD and asthma after an educational intervention based on the teach-to-goal method. This is a prospective, non-randomized, single-group study, with intervention and before-after evaluation. The study population included 120 patients (67 females and 53 males) diagnosed with asthma (70.8%) and COPD (29.1%). The level of adherence (low and optimal) and the noncompliance behavior pattern (erratic, deliberate and unwitting) were determined by the Test of the adherence to Inhalers (TAI). This questionnaire allows you to determine the level of adherence and the types of noncompliance. Low Adherence (LowAd) was defined as a score less than 49 points. All patients received individualized educational inhaler technique intervention (IEITI). Before the IEITI, 67.5% of the patients had LowAd. Following IEITI, on week 24, LowAd was 55% (p = 0.024). Each patient can present one or more types of noncompliance. The most frequent type was forgetting to use the inhaler (erratic), 65.8%. The other types were deliberate: 43.3%, and unwitting: 57.5%. All of them had decreased on the final visit: 51.7% (p = 0.009), 25.8% (p = 0.002), 39.2% (p = 0.002). There were no significant differences in adherence between asthma and COPD patients at the start of the study. The only predicting factor of LowAd was the female gender. An individualized educational intervention, in ambulatory patients with COPD and asthma, in real-world clinical practice conditions, improves adherence to the inhaled treatment

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities

    Get PDF
    The microbial world has been shown to hold an unimaginable diversity. The use of rRNA genes and PCR amplification to assess microbial community structure and diversity present biases that need to be analyzed in order to understand the risks involved in those estimates. Herein, we show that PCR amplification of specific sequence targets within a community depends on the fractions that those sequences represent to the total DNA template. Using quantitative, real-time, multiplex PCR and specific Taqman probes, the amplification of 16S rRNA genes from four bacterial species within a laboratory community were monitored. Results indicate that the relative amplification efficiency for each bacterial species is a nonlinear function of the fraction that each of those taxa represent within a community or multispecies DNA template. Consequently, the low-proportion taxa in a community are under-represented during PCR-based surveys and a large number of sequences might need to be processed to detect some of the bacterial taxa within the ‘rare biosphere’. The structure of microbial communities from PCR-based surveys is clearly biased against low abundant taxa which are required to decipher the complete extent of microbial diversity in nature

    Reliability and Short-Term Intra-Individual Variability of Telomere Length Measurement Using Monochrome Multiplexing Quantitative PCR

    Get PDF
    Studies examining the association between telomere length and cancer risk have often relied on measurement of telomere length from a single blood draw using a real-time PCR technique. We examined the reliability of telomere length measurement using sequential samples collected over a 9-month period.Relative telomere length in peripheral blood was estimated using a single tube monochrome multiplex quantitative PCR assay in blood DNA samples from 27 non-pregnant adult women (aged 35 to 74 years) collected in 7 visits over a 9-month period. A linear mixed model was used to estimate the components of variance for telomere length measurements attributed to variation among women and variation between time points within women. Mean telomere length measurement at any single visit was not significantly different from the average of 7 visits. Plates had a significant systematic influence on telomere length measurements, although measurements between different plates were highly correlated. After controlling for plate effects, 64% of the remaining variance was estimated to be accounted for by variance due to subject. Variance explained by time of visit within a subject was minor, contributing 5% of the remaining variance.Our data demonstrate good short-term reliability of telomere length measurement using blood from a single draw. However, the existence of technical variability, particularly plate effects, reinforces the need for technical replicates and balancing of case and control samples across plates

    Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues

    Get PDF
    Funding Information: This study was supported by the Latvian National Research Program BIOMEDICINE. E. Liepinsh was supported by the FP7 project InnovaBalt [grant Nr. 316149]. We would like to thank Dr. Reinis Vilskersts and Gita Dambrova for help with the isolated skeletal muscle experiments. Publisher Copyright: © 2017 The Author(s).Increased plasma concentrations of acylcarnitines (ACs) are suggested as a marker of metabolism disorders. The aim of the present study was to clarify which tissues are responsible for changes in the AC pool in plasma. The concentrations of medium- and long-chain ACs were changing during the fed-fast cycle in rat heart, muscles and liver. After 60 min running exercise, AC content was increased in fasted mice muscles, but not in plasma or heart. After glucose bolus administration in fasted rats, the AC concentrations in plasma decreased after 30 min but then began to increase, while in the muscles and liver, the contents of medium- and long-chain ACs were unchanged or even increased. Only the heart showed a decrease in medium- and long-chain AC contents that was similar to that observed in plasma. In isolated rat heart, but not isolated-contracting mice muscles, the significant efflux of medium- and long-chain ACs was observed. The efflux was reduced by 40% after the addition of glucose and insulin to the perfusion solution. Overall, these results indicate that during fed-fast cycle shifting the heart determines the medium- and long-chain AC profile in plasma, due to a rapid response to the availability of circulating energy substrates.publishersversionPeer reviewe

    Bacterial community development in experimental gingivitis.

    Get PDF
    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches to prevent periodontal disease.BBSRC Industrial Case Studentship ref no. BB/G01714X/1 in collaboration with GlaxoSmithKline

    Identification of Novel Genes and Pathways Regulating SREBP Transcriptional Activity

    Get PDF
    BACKGROUND: Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY: To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE: We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders

    A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology

    Get PDF
    The numerous species that make up the oral microbiome are now understood to play a key role in establishment and maintenance of oral health. The ability to taxonomically identify community members at the species level is important to elucidating its diversity and association to health and disease. We report the overall ecological effects of using a toothpaste containing enzymes and proteins compared to a control toothpaste on the plaque microbiome. The results reported here demonstrate that a toothpaste containing enzymes and proteins can augment natural salivary defences to promote an overall community shift resulting in an increase in bacteria associated with gum health and a concomitant decrease in those associated with periodontal disease. Statistical analysis shows significant increases in 12 taxa associated with gum health including Neisseria spp. and a significant decrease in 10 taxa associated with periodontal disease including Treponema spp. The results demonstrate that a toothpaste containing enzymes and proteins can significantly shift the ecology of the oral microbiome (at species level) resulting in a community with a stronger association to health
    corecore